

ABN 64 002 841 063

Job No: 14844/1 Our Ref: 14844/1-AA 2 March 2021

Indesco Suite 401 Level 4 / 24 Hunter Street PARRAMATTA NSW 2150 Email: Ziwar.Sattouf@indesco.com.au

Attention: Mr Z Sattouf

Re: Proposed Residential Subdivision Lot 4 in DP1213869 - 192 Narellan Road, Campbelltown Geotechnical & Pavement Design Investigation

This report details the results of a geotechnical investigation for the proposed residential subdivision at the above location. It is understood that the site is registered as Lot 4 in DP1213869, located at 192 Narellan Road, Campbelltown and is approximately 8.25ha.

Proposed Development

We understand that a geotechnical investigation is required to determine the existing surface and subsurface conditions, provide recommendation on pavement design, and identify potential salinity issues at the proposed subdivision development.

In this regard, a geotechnical investigation was required to determine subsurface conditions and develop geotechnical recommendations necessary for the design of the proposed residential subdivision.

Regional Geology

Reference to the Geological Map of Wollongong (1:100,000) indicates that the site is underlain by unnamed sandstone member – fine to medium grained quartz-lithic sandstone. This material belongs to the Wianamatta Group.

Reference to the Soil Landscape Map of Penrith (scale 1:100,000) indicates that the landscape across the site in general belongs to Blacktown Group. However, along the southern portion of site, the landscape belongs to Luddenham Group:

- Blacktown Group is characterised with gently undulating rises on Wianamatta Group shales, with local relief to 30m, ground slope of less than 5 percent, and broad rounded crests. The subsurface soil within this landscape is likely to be up to 3.0m thick, moderately reactive, highly plastic with poor drainage.
- Luddenham Group comprises of narrow ridges, hillcrests and valleys with extensively cleared open-forest (dry sclerophyll forest). Soils in this landscape are often shallow Brown Podzolic Soils and massive earthy clays on crests; moderately deep Red Podzolic Soils on upper slopes; moderately deep Yellow Podzolic Soils and Prairie Soils on lower slopes and near drainage lines.

Field work for this investigation was carried out on 10th February 2021 and included the following:

- A walk over survey to assess existing site conditions.
- Reviewing services plans obtained from "Dial Before You Dig" to determine locations of underground services across the site.
- Scanning test pit locations for underground services to ensure that services were not damaged during field work. A specialist was hired for this purpose.
- Excavating twelve (12) test pits to depths up to 1.5m or refusal on bedrock, using a standard 5 tonne excavator. The test pits were uniformly distributed along the proposed road alignment and their locations are shown on the attached Drawing No 14844/2-AA1.
- Recovery of the representative soil samples from the selected test pits for laboratory testing to determine California Bearing Ratio (CBR) and Atterberg limit values.

Field work was supervised by a Geotechnical Engineer from this company who was responsible for nominating the test pit locations, supervision of in-situ testing, sampling and preparation of field logs.

Sub-surface Conditions

Sub-surface conditions encountered at the site are detailed in the attached test pit logs and summarised in the Table below:

Test Pit	Termination Depth (m)	Topsoil (m)	Natural (m)	Bedrock (m)
TP2	2.5	0.0-0.2	0.2-1.6	1.6-2.5
TP4	2.2	0.0-0.2	0.2-2.0	2.0-2.2
TP6	2.2	0.0-0.2	0.2-2.0	2.0-2.2
TP16	1.8	0.0-0.2	0.2-1.6	1.6-1.8
TP18	1.3	0.0-0.2	0.2-1.1	1.1-1.3
TP24	2.0	0.0-0.2	0.2-1.8	1.8-2.0
TP28	1.2	0.0-0.2	0.2-1.0	1.0-1.2
TP34	3.0	0.0-0.2	0.2-3.0	NE
TP37	2.0	0.0-0.2	0.2-1.7	1.7-2.0
TP42	1.3	0.0-0.2	0.2-1.0	1.0-1.3
TP44	3.0	0.0-0.2	0.2-3.0	NE
TP50	2.2	0.0-0.2	0.2-1.8	1.8-2.2

	Table 1 –	Subsurface	Conditions	Encountered in	Test Pits
--	-----------	------------	------------	----------------	------------------

Natural	Silty CLAY, medium plasticity, brown/orange
	Shaley CLAY, low to medium plasticity, grey
	Silty CLAY, medium plasticity, grey mottled red, traces of ironstone
	Silty CLAY, medium plasticity, orange
Bedrock	SHALE, grey, extremely to distinctly weathered, low to medium strength

2

EOTECHNIQUE

3

14844/1-AA 192 Narellan Road, Campbelltown

Based on information presented in Table 1, the sub-surface profile at the site is anticipated to comprise a sequence of natural clayey soils underlain by shale bedrock. Shale bedrock found was assessed as distinctly weathered and low to medium strength.

Groundwater Conditions

Groundwater/seepage was not observed in any of the test pits during the short time they remained open. It should be noted that the levels of groundwater/seepage might vary due to rainfall, temperature, and other factors not evident during test pit excavation.

Laboratory Testing

Chemical Test Results

During field work, five additional soil samples were collected for chemical testing in a NATA accredited laboratory called SGS for salinity, acidity or aggressivity properties. The laboratory test results certificates from SGS are attached at the end of the report and summarised in Table 2 below:

Test Pit No	Depth (m)	EC (µS/cm)	Multiplying Factor (MF)	ECe (dS/m)	рН
TP4	0.2-0.4	100	8	0.80	5.9
TP4	1.4-1.6	570	8	4.56	5.6
TP16	0.2-0.4	30	8	0.24	7.0
TP16	1.3-1.5	270	8	2.16	5.0
TP18	0.2-0.4	100	8	0.80	5.4
TP18	0.7-0.9	140	8	1.12	5.2
TP24	0.2-0.6	140	8	1.12	5.5
TP24	1.0-1.2	780	8	6.24	4.8
TP34	0.2-0.4	49	8	0.39	5.5
TP34	1.2-1.4	430	8	3.44	4.5
TP44	0.2-0.4	30	8	0.24	6.1
TP44	1.8-2.0	140	8	1.12	5.2
TP50	0.2-0.4	23	8	0.18	6.2
TP50	0.8-1.0	400	8	3.20	5.1

Table 2 : Summary of Chemical Tests Results

Salinity Assessment

Salinity refers to the presence of excess salt in the environment, either in soil or water. Salinity is a serious problem for any development due to the many environmental, economic and social impacts. Soil salinity is generally assessed by measuring Electrical Conductivity (EC) of a soil sample made up of 1:5 soil water suspension. Thus, determined Electrical Conductivity (EC) is multiplied by a factor varying from 6 to 23, based on the texture of the soil sample, to obtain Corrected Electrical Conductivity designated as ECe (Reference 1). Alternatively, ECe may be directly measured in soil saturation extracts. Soils are classified as saline if ECe of the saturated extracts exceed 4.0dS/m. The criteria for assessment of soil salinity classes are shown below (Reference 1).

4

Classification	EC _e (dS/m)	Comments
Non-saline	<2	Salinity effects mostly negligible
Slightly saline	2-4	Yields of very sensitive crops may be affected
Moderately saline	4 – 8	Yields of many crops affected
Very saline	8 – 16	Only tolerant crops yield satisfactorily
Highly saline	>16	Only a few tolerant crops yield satisfactorily

Electrical Conductivity (EC) values for fourteen (14) representative soil samples recovered from the test pits at different depths are summarised in Table 2. For the nature of soils encountered across the site, a multiplying factor of 8 is considered to be appropriate. Therefore, Corrected Electrical Conductivity (ECe) for the soils is anticipated to vary from 0.18 to 6.24dS/m. Therefore, it is our assessment that the soils at the proposed residential subdivision site are likely to be non-saline to moderately saline. Concrete structures constructed in non-saline soils will not require any increase in concrete strength or concrete cover or curing period.

This salinity assessment was carried out in accordance with the Environment Protection Authority (EPA) guidelines on investigation and management of salinity. These guidelines are detailed in "Site Investigations for Urban Salinity" and were prepared by the then Department of Land & Water Conservation in 2002.

Aggressivity/Acidity Assessment

Soils with high acidity affect the integrity of concrete structures buried in the soil. Concrete structures constructed in aggressive soils will require increased concrete strength proportional to the increased in soil aggressivity (Reference 2). In addition, the concrete cover and curing period should be increased depending on the degree of aggressivity of the soil.

Acidity (pH) testing was also conducted to determine the aggressivity of the soils to steel and concrete. The various classes of aggressive soils are defined as follows according to AS2870-2011.

Classification	рН
Non-aggressive	>5.5
Mild	4.5-5.5
Moderate	4.0-4.5
Severe	<4.0

Results of acidity tests, which include determination of pH are presented in Table 2. The table shows that the pH values of soils are greater than 4.5. Based on the laboratory test results and the assumption that soils have low permeability, the soils across the site are assessed to be mildly aggressive towards both steel and concrete. Therefore, we recommend use of construction materials, such as concrete and steel that are appropriate to assessed aggressivity.

RR.sf/02.03.2021

Soil Erodibility Assessment

Soil dispersivity or erodibility is generally assessed by conducting chemical tests such as Exchangeable Sodium Percentage (ESP) and Sodium Absorption Ratio (SAR), and physical tests such as Emerson Class and Dispersion Percentage. It should be noted that assessment of soil dispersibility based on these methods might differ from each other.

For the proposed work, only ESP values for representative soil samples were determined. Soils with ESP values of 5% or more are considered sodic, and those with ESP more than 15% are considered highly sodic (Reference 6). Sodic soils are dispersive and susceptible to excessive erosion.

Test Pit No	Sample Depth (m)	ESP (%)	Assessment		
TP4	0.2-0.4	8.4	Sodic		
TP4	1.4-1.6	29.0	Highly sodic		
TP16	0.2-0.4	7.6	Sodic		
TP16	1.3-1.5	32.9	Highly sodic		
TP18	0.2-0.4	7.1	Sodic		
TP18	0.7-0.9	18.8	Highly sodic		
TP24	0.2-0.6	11.3	Sodic		
TP24	1.0-1.2	26.9	Highly sodic		
TP34	0.2-0.4	8.0	Sodic		
TP34	1.2-1.4	29.8	Highly sodic		
TP44	0.2-0.4	8.6	Sodic		
TP44	1.8-2.0	25.2	Highly sodic		
TP50	0.2-0.4	5.6	Sodic		
TP50	0.8-1.0	25.4	Highly sodic		

ESP results and the assessment based on the above criteria are shown below:

	Tabl	e 7' ESP	Resu	lts and	Disper	sive	Assessm	nent

The recommended thresholds for erodibility assessment are shown below (Reference 6).

ESP (%)	Assessment
<5	Non sodic
5 – 15	Sodic
>15	Highly sodic

Table 6 – Recommended Thresholds for Erodibility

Based on the above results the soils at the site are dispersive to highly dispersive and susceptible to erosion. Therefore, we recommend that the earthworks for the proposed development works should be carried out in accordance with an appropriate soil management plan.

Recommended Bearing Capacity

At the completion of earthworks, the foundation materials at the ground floor levels of future residences will include controlled fill and/or residual soils. Under such circumstances, ground floor slabs for the proposed residences may be designed and constructed as ground bearing slabs or suspended slabs supported by footings designed in accordance with recommendations provided in this report.

Loading conditions for the proposed residences are not known at this stage. However, we consider that appropriate footings would comprise shallow footings (pad and strip footings) founded on controlled fill, residual soils, bedrock shale, or deep footings (bored piers or screw piles) socketed into bedrock. Deep footings would be preferable where footings are required to withstand significant lateral and uplift pressures.

A total of nine (9) Dynamic Cone Penetrometer (DCP) Tests were conducted during the investigation, at the location shown on the attached Drawing No 14844/1-AA1 DCP Nos 1 to 9 and results are shown on the respective test pit logs.

The DCP test results generally indicate that the subsurface materials are stiff to hard. Based on the above results, it is our assessment that the bearing capacity of the existing ground at the tested location is in excess of 150kPa.

The recommended allowable bearing pressures for design of footings are presented in the following Table 3.

Founding Material	Founding Depth (m)	Allowable Bearing Pressure (kPa)	Allowable Shaft Adhesion (kPa)
Residual Soils	0.2-1.5	150	3.75
Bedrock Shale	1.5->3.0	700	70.0

Table 3 – Recommended Allowable Bearing Pressures

As depths to residual soils and bedrock with the recommended allowable bearing pressures could vary across the site, the founding depths of footings to be constructed will also vary. The founding depths presented in Table 3 are measured at test pit locations at the time of geotechnical investigation and should be considered as indicative only.

All footings should be inspected by an experienced Geotechnical Engineer to ensure that they are founded in appropriate materials to achieve the design bearing pressure values.

Pavement Design

Design of internal road pavements depends on traffic load and strength of subgrade, which is usually represented by CBR value.

We anticipate that the internal roads within the proposed subdivision will be classified as Local Roads or Collector Roads. Based on the Campbelltown City Council design specification, the following design traffic loading (ESA) is adopted for the pavement design.

Council Road Type	Design Traffic Loading (ESA)
Local/ Access	3x10 ⁵
Collector	1x10 ⁶

During field work, four subgrade samples were collected for Soaked California Bearing Ratio (CBR) tests. The CBR tests were conducted on samples compacted at 100% standard dry density with optimum moisture content and soaked for four days in a NATA accredited laboratory called Geotech Testing Pty Ltd. The comprehensive results for the laboratory CBR tests conducted are attached at the end of this report and summarised in Table 4.

Test Pit	Sample Depth (m)	Soil Description	MDD (t/m³)	OMC (%)	FMC (%)	Variation From OMC	Swell (%)	CBR (%)
TP2	0.5-0.8	(CI) Silty CLAY, medium plasticity, brown-orange	1.71	21.5	18.9	2.6 dry	2.0	4.0
TP6	1.0-1.3	(CI) Silty CLAY, medium plasticity, grey mottled red, traces of ironstone	1.77	17.5	15.2	2.3 dry	1.5	3.5
TP28	0.7-1.0	(CI) Silty CLAY, medium plasticity, grey mottled red, traces of ironstone	1.74	19.5	16.1	3.4 dry	1.5	4.5
TP37	0.4-0.7	(CI) Silty CLAY, medium plasticity, brown	1.79	19.0	14.7	4.3 dry	1.5	4.0
TP42	1.0-1.3	SHALE, grey, distinctly weathered, medium strength	1.89	14.0	10.8	3.2 dry	0.5	9.0

Table 4: Summary of CBR Tests Results

MDD: Maximum Dry Density, FMC: Field Moisture Content, OMC: Optimum Moisture Content, CBR: California Bearing Ratio

The soaked CBR values obtained from laboratory testing of selected subgrade soils range from 3.5% to 9%. Based on these results, a design CBR of 3.5% is adopted for the pavement design for all proposed roads.

Based on recommended traffic loads and design subgrade CBR values, the recommended flexible pavement designs for Local and Collector Roads, in accordance with Austroad (5) are presented in the following Table5.

		-		
Pavement Materials	Thickness for Local Road	Thickness for Collector Road		
Asphaltic Concrete	50mm	50mm (AC14)		
Two coat hot bitumen seal				
Base-course Material (DGB20)	115mm	135mm		
Sub-base course Material (DGS40)	310mm	355mm		
Total Thickness	475mm	540mm		

Table 5 - Recommended Pavement Design

Recommended pavement thicknesses presented in Table 12 are valid only if the subgrade and pavement materials are compacted to the following Minimum Dry Density Ratios.

Basecourse	98% Modified
Sub-basecourse	98% Modified
Subgrade	100% Standard

The pavement design assumes provision of adequate surface and sub-surface drainage of the pavement and adjacent areas.

General

Assessments and recommendations presented in this report are based on site observation and information from test pits only. Although we believe that the sub-surface profile presented in this report is indicative of the general profile across the site, it is possible that the sub-surface profile could differ from that encountered in the test pits. Likewise, comments on groundwater/seepage are based on observation during field work.

If you have any questions, please do not hesitate to contact the undersigned.

Yours faithfully GEOTECHNIQUE PTY LTD

RAM RAVI-INDRAN Geotechnical Engineer

 Attached
 Drawing No 14844/2-AA1 Test Pit Location Plan & Drawing No 14844/1-AA1 DCP Nos 1 to 9

 Engineering Test Pit Logs & Explanatory Notes

 Laboratory Test Results (CBR)

 Laboratory Test Results (Chemical Testing)

References

- 1. Lillicrap, A and McGhie, S., Site Investigation for Urban Salinity, Department of Land and Water Conservation, 2002.
- 2. Australian Standard AS2870-2011 "Residential Slabs and Footings".
- 3. Standard Australia- AS2159-1995, Piling Design and Installation, 1995.
- 4. Pells, P J N, Mostyn, E and Walker, B F Foundations on Sandstone and Shale in the Sydney Region, Australian Geomechanics Journal, Dec 1998.
- 5. Austroads, Guide to Pavement Technology, Part 2, Structural Design, 2010.
- 6. Fell, R., MacGregor, P and Stapledon, D., Geotechnical Engineering of Embankment Dams, 1992.

engineering log - excavation

	Clier Proje Loca	nt : ect : ation	:	In Pi 19	ide rop 92	sco oosed Narell	Res an F	identia Road, i	al Subdivision Campbelltown	Job Pit Dat Log	No: No: e: 05 ged/Ch	14844 TP2 5/02/20 ecked	4/1)21 by: J⊦	1
	Equi	pmei	nt ty	pe	ar	nd mo	del	:	5 Ton Excavator		F	R.L. su	irface :	97.288
	Exca	avatio	on d	im	ens	sions	:	2.	0 m long	0.45 m wide	C	datum	:	AHD
groundwater	env samples	PID reading (ppm)	geo samples	field	tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DI soil type, plasticity or p colour, secondary and	ESCRIPTION particle characteristic, I minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
				C O N	3	0			TOPSOIL: Silty Clay, low brown, trace of root fibre	v to medium plasticity, s				_
			DB	E -	3 6 9 9 8 10	 0.5		CI	Silty CLAY, medium plas	sticity, brown-orange	M≤PL	F		Residual
					9 15 9 20	 1		CL-CI	Shaley CLAY, low to me	dium plasticity, grey	M⊴PL	Н		
						 1.5			SHALE, grey, extremely strength	weathered, low				Bedrock
						 2 			J					
Dry						<u> </u>								
							-		Test Pit TP2 terminated	at 2.5m				
						3	-							
							-							
						4								- -
						 4.5								
							-							

engineering log - excavation

	Cliei Proj Loca	nt : ect : ation	:	Inde Prop 192	sco oosed Narella	Res an F	identia Road, (al Subdivision Campbelltown	Job No : 14844/1 ision Pit No : TP4 Itown Date : 05/02/2021 Logged/Checked by: JH Kcavator R.L. surface : 93.059					
	Equi	ipmeı	nt ty	pe ar	nd mo	del	:	5 Ton Excavator			F	R.L. su	rface	93.059
L	Exca	avatio	on d	imen	sions	:	2.	0 m long	0.45 m	wide	d	atum	:	AHD
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL C soil type, plasticity or colour, secondary an	ESCRIPTION particle characte d minor compon	eristic, ents.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
					0			TOPSOIL: Silty Clay, lo trace of root fibres	w plasticity, browr	n,				_
Dry			DS				CL-CI	TOPSOIL: Silty Clay, lo trace of root fibres Silty CLAY, medium pla Silty CLAY, low to medi SHALE, grey, distinctly strength Test Pit TP4 terminated on bedrock	w plasticity, browr isticity, orange um plasticity, grey weathered, mediu I at 2.2m due to re	n,	M≤PL	F-St		Residual

engineering log - excavation

	Clier Proje Loca	nt : ect : ation	:	Inde Prop 192	esco bosed Narell	Res an F	identia Road,	al Subdivision Campbelltown	Job Pit Dat Log	No: No: e: 05 ged/Ch	14844 TP6 5/02/20 ecked	4/1)21 by: J⊦	1
	Equi	pmei	nt ty	pe a	nd mo	del		5 Ton Excavator		F	R.L. su	Irface	92.565
I	Exca	vatio	on d	imen	sions	:	2.	0 m long	0.45 m wide	(latum	:	AHD
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DE soil type, plasticity or p colour, secondary and	ESCRIPTION particle characteristic, I minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
				C 2 N 2 2	0 _			TOPSOIL: Silty Clay, low trace of root fibres	v plasticity, brown,				_
Dry			DB	C 0 2 0 N E 2 4 7 12 9 9 12 15 12 14 14 12 277 R			CI	TOPSOIL: Silty Clay, low trace of root fibres Silty CLAY, medium plas Silty CLAY, medium plas trace of ironstone SHALE, grey, distinctly v strength Test Pit TP6 terminated on bedrock	v plasticity, brown, sticity, orange sticity, grey mottled red, veathered, medium at 2.2m due to refusal	M≤PL	St VSt		Residual
													-
					4								
					-								
					_								_
					4.5								-
					-	-							-

engineering log - excavation

	Clier Proje Loca	nt : ect : ation	:	Inde Prop 192	sco osed Narell	Res an F	Jo Residential Subdivision An Road, Campbelltown Lo del: 5 Ton Excavator				Job No : 14844/1 Pit No : TP16 Date : 05/02/2021 Logged/Checked by: JH R.L. surface : 98.095			
	Equi	pmei	nt ty	pe ar	nd mo	del	-	5 Ton Excavator		I	R.L. sı	irface	98.095	
	Exca	vatio	on di	imen	sions	:	2.	0 m long	0.45 m wid	e (datum	:	AHD	
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DI soil type, plasticity or p colour, secondary and	ESCRIPTION particle characteristic I minor components.	unisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations	
					0			TOPSOIL: Silty Clay, lov trace of root fibres	v plasticity, brown,				_	
6 Dry			DS				CI	TOPSOIL: Silty Clay, lov trace of root fibres Silty CLAY, medium plas Silty CLAY, medium plas SHALE, grey, distinctly v strength Test Pit TP16 terminated on bedrock	v plasticity, brown, sticity, orange sticity, grey veathered, medium	AI	St St		Residual	
					4.5									

engineering log - excavation

Client : Indesco Job No : 14844/1 Project : Proposed Residential Subdivision Pit No : TP18 Location : 192 Narellan Road, Campbelltown Date : 05/02/2021 Logged/Checked by: JH Equipment type and model: 5 Ton Excavator R.L. surface :											No: No: e: 05 ged/Ch	14844 TP18 5/02/20 ecked	‡/1)21 by: J⊦	I
E	Equi	pmer	nt ty	ре	ar	nd mo	del	:	5 Ton Excavator		F	R.L. su	rface	96.903
E	Ехса	vatio	on d	ime	ens	sions	:	2.	0 m long 0.45	m wide		latum	:	AHD
groundwater	env samples	PID reading (ppm)	geo samples	field	tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPT soil type, plasticity or particle of colour, secondary and minor of	ION haracteristic, components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
				C O N	3	0 _			TOPSOIL: Silty Clay, low plasticit trace of root fibres	:y, brown,				_
			DS		3 3 3 3	 0.5		CI	Silty CLAY, medium plasticity, ora	ange	M⊴PL	St		Residual
			DS		5 5 R	 1		CI	Silty CLAY, medium plasticity, gro	эу				- - -
Ŗ						_			SHALE, grey, distinctly weathere strength	d, medium				Bedrock
y						1.5 — — 2 — 2.5 — 3 — 3.5 — 4 — 4.5 — —			Test Pit TP18 terminated at 1.3m on bedrock	due to refusal				

engineering log - excavation

Client : Indesco Job No : 14844/1 Project : Proposed Residential Subdivision Pit No : TP24 Location : 192 Narellan Road, Campbelltown Date : 05/02/2021 Equipment type and model: 5 Ton Excavator R.L. surface :											I		
1	Equi	pmei	nt ty	pe ai	nd mo	odel		5 Ton Excavator		F	R.L. su	irface :	109.365
	Exca	vatio	on d	imen	sions	:	2.	0 m long	0.45 m wide	C	latum	:	AHD
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DE soil type, plasticity or p colour, secondary and	ESCRIPTION particle characteristic, I minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
					0 _			TOPSOIL: Silty Clay, low trace of root fibres	/ plasticity, brown,				_
			DS		 0.5		CI	Silty CLAY, medium plas	ticity, orange	M⊴PL	St		Residual
					-								
			DS		1 — - -		CI	Silty CLAY, medium plas trace of ironstone	ticity, grey mottled red,	M≤PL	St		
					 1.5 -	******							
Dry					-			SHALE, grey, distinctly v strength	veathered, medium				Bedrock
					- 2	-		Test Pit TP24 terminated on bedrock	l at 2.0m due to refusal				_
					_								_
					2.5	-							
					_								
					-	-							
					3 —								
					-	-							-
					-								
					-								
					4								
					_								_
					-								_
					4.5 —								
					_								

engineering log - excavation

	Cliei Proje Loca	nt: ect: ation	:	In Pi 19	de: rop 92	sco osed Narell	Res an I	sidentia Road,	al Subdivision Pit Campbelltown Dat	NO: NO: e: 08	14844 TP28 3/02/20	4/1)21 by: It	1/27
	Equi	ipmeı	nt ty	pe	ar	nd mo	del		5 Ton Excavator	<u>gea</u> , or	R.L. su	irface	: 102.404
1	Exca	avatio	on d	ime	ens	sions	:	2	0 m long 0.45 m wide	C	datum	:	AHD
groundwater	env samples	PID reading (ppm)	geo samples	field	tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
				C O N	3	0 _			TOPSOIL: Silty Clay, low plasticity, brown, trace of root fibres				_
				E _	2 3 7	_		CI	Silty CLAY, medium plasticity, orange	M⊴PL	F		Residual
			DB		8 7 6 7	0.5 — — —		CI	Silty CLAY, medium plasticity, grey mottled red, trace of ironstone fragments	M≤PL	F		-
Dry					12 22 R				SHALE, grey, distinctly weathered, medium strength				Bedrock
									Test Pit TP28 terminated at 1.2m due to refusal on bedrock				

GEOTECHNIQUE PTY LTD

engineering log - excavation

	Clier Proje Loca	nt : ect : ation	:	Inde Prop 192	sco bosed Narella	Res an f	identia Road, (al Subdivision Campbelltown	Job No Pit No Date : Loggeo	o: 1484 : TP34 08/02/2 I/Checked	.4/1 021 I by : J⊦	ł/XZ
	Equi	ipmei	nt ty	pe ar	nd mo	del		5 Ton Excavator		R.L. s	urface	: 101.990
	Exca	avatio	on di	imen	sions	:	2.	0 m long 0.45 m v	wide	datum	1:	AHD
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characte colour, secondary and minor compone	ristic, tsion ents. ou	condition consistency density index	hand penetrometer kPa	Remarks and additional observations
					0			TOPSOIL: Silty Clay, low plasticity, brown trace of root fibres	١,			_
			DS DS				CI	Silty CLAY, medium plasticity, orange	M:	PL F		Residual
Dry					2 2 2.5 							
								Test Pit TP34 terminated at 3.0m				

engineering log - excavation

Client : Indesco Job No : 14844/1 Project : Proposed Residential Subdivision Pit No : TP37 Location : 192 Narellan Road, Campbelltown Date : 08/02/2021 Equipment type and model: 5 Ton Excavator R.L. surface : 94											ł/XZ	
	Equi	pmer	nt ty	pe a	ind mo	odel	:	5 Ton Excavator		R.L. sı	urface	: 94.377
	Exca	avatio	on di	imer	nsions	:	2.	0 m long 0.45 m w	vide	datum	:	AHD
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteri colour, secondary and minor compone	istic, istic, more that is the second s	consistency density index	hand penetrometer kPa	Remarks and additional observations
				CON	3 0			TOPSOIL: Silty Clay, low plasticity, brown, trace of root fibres				-
			DB				CI	Silty CLAY, medium plasticity, brown	M≤P	L F	-	Residual
				1	6 1 — 0 — 0							
					- - 1.5		CI	Silty CLAY, low plasticity, grey	M≤P	L F		
Dry					-			SHALE, grey, distinctly weathered, mediun strength	n			Bedrock
Dry								Test Pit TP37 terminated at 2.0m due to re on bedrock	fusal			

engineering log - excavation

form no. 001 version 04 - 05/11

Client :IndescoJob No :14844/1Project :Proposed Residential SubdivisionPit No :TP42Location :192 Narellan Road, CampbelltownDate :08/02/2021Logged/Checked by:JH/XZ								I/XZ						
1	Equi	pme	nt ty	pe	an	nd mo	del		5 Ton Excavator		F	R.L. su	irface :	96.520
	Exca	avatio	on di	ime	ens	sions	:	2.	0 m long 0.4	45 m wide	C	latum	:	AHD
groundwater	env samples	PID reading (ppm)	geo samples	geo geo samples fatil depth or address fatil meters six in meters six motor geo six geo six motor six six motor geo six six motor six six six six six six					Remarks and additional observations					
				CON	3	0 _	<pre></pre>		TOPSOIL: Silty Clay, low pla trace of root fibres	sticity, brown,				_
				E _	3 6 13	0.5		CI	Silty CLAY, medium plasticity	/, orange	M≤PL	F		Residual
					12 12 16 16			CI	Silty CLAY, medium plasticity	ı, grey	M⊴PL	F		-
Dry			DB		16 R	1 — 			SHALE, grey, distinctly weath strength	nered, medium				Bedrock
									Test Pit TP42 terminated at 1 on bedrock	.3m due to refusal				

GEOTECHNIQUE PTY LTD

engineering log - excavation

Client :IndescoJob No :14844/1Project :Proposed Residential SubdivisionPit No :TP44Location :192 Narellan Road, CampbelltownDate :08/02/2021Logged/Checked by:JH/XZ								ł/XZ				
[ī	Equi	pme	nt ty	pe al	nd mo	del	:	5 Ton Excavator		R.L. sı	Irface	91.735
Ľ	Exca	avatio	on d	imen	sions	:	2.	0 m long 0.45 m wi d	le	datum	:	AHD
groundwater	env samples	PID reading (ppm)	(b) matrix (b) matrix (c) matrix						roisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
				C 4 O 4 N 4	0			TOPSOIL: Silty Clay, low plasticity, brown, trace of root fibres				_
			DS	E 4 4 6 18	 0.5		CI	Silty CLAY, medium plasticity, orange	M⊴PL	F		Residual
				20	 1		CI	Silty CLAY, medium plasticity, grey	M⊴PL	St		- - - - -
					 1.5 	*****						- - - -
			DS	-	2		CL-CI	Shaley CLAY, low to medium plasticity, grey	M⊴PL	Н		
Dry					2.5 — — — — — 3							
						-		Test Pit TP44 terminated at 3.0m				- - - -
					-	-						
					4	-						
					4.5 — — —	-						

engineering log - excavation

Client :IndescoJob No :14844/1Project :Proposed Residential SubdivisionPit No :TP50Location :192 Narellan Road, CampbelltownDate :08/02/2021Logged/Checked by:JH/XZ								ł/XZ					
	Equi	ipme	nt ty	ре а	and mo	odel	:	5 Ton Excavator		F	R.L. sı	Irface	95.575
L	Exca	avatio	on di	ime	nsions	:	2.	0 m long	0.45 m wide	• •	datum	:	AHD
groundwater	env env env samples PID reading geo samples geo samples geo samples geo samples geo samples geo samples symbol graphic log graphic log geo samples symbol symbol geo samples geo samples symbol symbol classification geo samples soil type bol soil type geo samples symbol soil type soil type geo samples soil type soil type soil type geo samples soil type soil type soil type soil type soil type					moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations				
					4 0			TOPSOIL: Silty Clay, lo trace of root fibres	w plasticity, brown,				_
			DS		4 4 6 0.5 		CI	Silty CLAY, medium pla	sticity, orange	M⊴PL	F		Residual
			DS		20 1 		CI	Silty CLAY, medium pla	sticity, grey	M⊴PL	F		
Dry					2			SHALE, grey, distinctly strength	weathered, medium				Bedrock
								Test Pit TP50 terminate on bedrock	d at 2.2m due to refusa				

Log Column	Symbol/Value		Description		
Drilling Method	V-bit		Hardened stee	L'\/' shaped bit attached to auger	
Drining Method	TC-bit		Tungsten Carb	ide bit attached to auger	
	RR		Tricone (Rock	Roller) bit	
	DB		Drag bit	,	
	BB		Blade bit		
Groundwater	Dry		Groundwater n	ot encountered to the drilled or auger	refusal depth
	_		Groundwater le	evel at depths shown on log	
			Groundwater s	eepage at depths shown on log	
Environment Sample	GP		Glass bottle an	d plastic bag sample over depths show	wn on log
	G		Glass bottle sa	mple over depths shown on log	
PID Reading	100		Plastic bag sar PID reading in	ppm	
Geotechnical Sample	DS		Disturbed Sma	Il bag sample over depths shown on lo	pq
	DB		Disturbed Bulk	sample over depths shown on log	0
	U ₅₀		Undisturbed 50	mm tube sample over depths shown o	on log
Field Test	N=10		Standard Pene	tration Test (SPT) 'N' value. Individua	I numbers indicate blows per
	3,5,5		150mm penetra	ation.	
	N=R		'R' represents	refusal to penetration in hard/very den	se soils or in cobbles or
	10,15/100		boulders.		
			The first number	er represents10 blows for 150mm pene	etration whereas the second
			number repres	ents 15 blows for 100mm penetration	where SPT met refusal
	DOD/DOD	-	D : 0		
	DCP/PSP	5	Dynamic Cone	Penetration (DCP) or Perth Sand Pen	etrometer (PSP). Each
		6	10mm penetrat	tion in hard/very dense soils or in grav	els or boulders
		R/10	ronni ponotici		
Classification	GP		Poorly Graded	GRAVEL	
	GW		Well graded GI	RAVEL	
	GM		Silty GRAVEL		
	GC		Clayey GRAVE		
	SP		Poorly graded	SAND	
	SM		Silty SAND		
	SC		Clayey SAND		
	ML		SILT / Sandy S	ILT / clayey SILT, low plasticity	
	MI		SILT / Sandy S	SILT / clayey SILT, medium plasticity	
	MH		SILT / Sandy S	GLT / clayey SILT, high plasticity	
			CLAY / Silty CL	AY / Sandy CLAY / Gravelly CLAY, IC	pedium plasticity
	СН		CLAY / Silty Cl	_AY / Sandy CLAY / Gravelly CLAY, h	igh plasticity
Moisture Condition			2		
Cohesive soils	M <pl< td=""><td></td><td>Moisture conte</td><td>nt less than Plastic Limit</td><td></td></pl<>		Moisture conte	nt less than Plastic Limit	
	M=PL		Moisture conte	nt equal to Plastic Limit	
	M>PL		woisture conte	ni to be greater than Plastic Limit	
Cohesionless soils	D		Dry -	Runs freely through hand	
	М		Moist -	Tends to cohere	
	W		Wet -	Tends to cohere	
Consistency	Ve		Term	Undrained shear strength,	Hand Penetrometer
COLIESIVE SOILS	S		Very Soft	υ_u (κ۳α) <12	(QU) ~25
	F		Soft	>12 & ≤25	25 – 50
	St		Firm	>25 & ≤50	50 - 100
	VSt		Stiff	>50 & ≤100	100 – 200
	Н		Very Stiff	>100 & ≤200	200 - 400
Density Index				>200 Density Index In (%)	SPT (N' (blows/300mm)
Cohesionless soils	VL		Very Loose	≤15	≤5 ≤5
	L		Loose	>15 & ≤35	>5 & ≤10
	М		Medium Dense	e >35 & ≤65	>10 & ≤30
	D		Dense	>65 & ≤85	>30 & ≤50
Hand Penetromotor	100		Very Dense	>00 moressive strength (g) in kPa datarmi	>0U
	200		penetrometer	at depths shown on log	neu using pockel
Remarks			Geological orio	in of soils	
	Residual		Residual soils	above bedrock	
	Alluvium		River deposited	d Alluvial soils	
	Colluvial		Gravity deposit	ed Colluvial soils	
	Aeolian Marine		Wind deposited	a Aeoiian Soiis	

AS1726 : 2017– Unified Soil Classification System

Major D	Divisions	Particle size (mm)	Group Symbol	Typical Names	Field Identi	fications Sand a	nd Gravels				Laboratory classificat	ion	
	BOULDERS	>200							% Fines (2)	Plasticity of Fine Fraction	$C_u = D_{60}/D_{10}$	$C_c = (D_{30})^2 / (D_{10}D_{60})$	Notes
OVERSIZE	COBBLES	63						,st					
		Coorre 10	GW	Well-graded gravels, gravel-sand mixtures, little or no fines	Wide range in g of all intermedia coarse grains, n	rain size and subs te sizes, not enou o dry strength	tantial amounts gh fines to bind	r Divisior	≤5	-	>4	between 1 and 3	1. Identify lines by the method given for fine
	GRAVEL (more than half of	Coarse 19	GP	Poorly graded gravels, gravel- sand mixtures, little or no fines, uniform gravels	Predominantly of some intermedia fines to bind coa	ne size or range ate sizes missing, arse grains, no dry	of sizes with not enough strength	n in 'Majo	≤5	-	Fails to com	ply with above	grained soils
004005	larger than 2.36mm)	Modium 6 7	GM	Silty gravels, gravel-sand-silt mixtures	'Dirty' materials zero to medium	with excess of no dry strength	n-plastic fines,	iteria give	≥12	Below 'A' line or I _p <4			2. Borderline classifications occur when the
COARSE GRAINED SOIL (more than 65% of		Fine 2.26	GC	Clayey gravels, gravel-sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	stic fines,	g to the cr	≥12	Above 'A' line or I _p >7	-	-	fines (fraction smaller than 0.075mm size) is
soil excluding oversize fraction is greater than 0.075mm)		Coarse 0.6	SW	Well-graded sands, gravelly sands, little or no fines	Wide range in g of all intermedia coarse grains, n	rain size and subs te sizes, not enou o dry strength	tantial amounts gh fines to bind	accordin	≤5	-	>6	between 1 and 3	greater than 5% and less than 12%. Borderline classifications
0.075mm)	SAND (more than half of	Medium 0.21	SP Poorly graded sands and gravelly sands; little or no fines, uniform sands Predominantly one size or range of size some intermediate sizes missing, not er fines to bind coarse grains, no dry stren						≤5	-	Fails to com	ply with above	require the use of dual symbols e.g. SP-SM, GW-
	coarse fraction is smaller than 2.36mm)	initial and the left	SM	Silty sands, sand-silt mixtures	'Dirty' materials zero to medium	with excess of no dry strength	n-plastic fines,	ification c	≥12	Below 'A' line or <i>I_p</i> <4	-	-	
		Fine 0.075	SC	Clayey sand, sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	stic fines,	n for class	≥12	Above 'A' line of I _p >7	-	-	
			ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight	Dry Strength None to low	Dilatancy Slow to	Toughness Low	ng 63mn		Below 'A'		1	
	SILT (0.075mm to 0.0 CLAY (<0.002mm)	002mm) &	CL, CI	plasticity Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	Medium to high	rapid None to very slow	Medium	aterial passi	um M	line Above 'A' line	ov A		
FINE GRAINED			OL	Organic silts and organic silty clays of low plasticity	Low to medium	Slow	Low	ation of me	sing 0.075	Below 'A' line	50 50 <u><u><u>*</u></u> 40</u>		1100 200
SOIL (more than 35% of soil excluding oversize fraction is less than			MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	Low to medium	None to slow	Low to medium	the grads	1 35% pas	Below 'A' line	DE LE LA INDEX	Cl or Ol	20
0.075mm)	SILT (0.075mm to 0.0 CLAY (<0.002mm) Liquid Limit>50%	002mm) &	СН	Inorganic clays of medium to high plasticity, fat clays	High to very high	None	High	Use	More thar	Above 'A' line		DL MH or 0	H
	Liquid Limit>50%		OH (1)	Organic clays of medium to high plasticity, organic silts	Medium to high	None to very slow	Low to medium	Low to medium		Below 'A' line		ML or DL 0 40 50 60 70 LIQUID LIMIT W _L , %	0 80 90 100
	HIGHLY ORGANIC S	SOILS	Pt (1)	Peat and highly organic soils	Identified by colo generally by fibr	our, odour, spong ous texture	y feel and		Effervesce	s with H ₂ O ₂	1		

Log Symbols & Abbreviations (Cored Borehole Log)

Log Column	Symbol / Abbreviation	Description		
Core Size		Nominal Core Size (mm	n)	
	NQ NMLC	47 52		
	HQ	63		
Water Loss		Complete water loss		
	\longrightarrow	Partial water loss		
Weathering (AS1726:2017)	RS	Residual Soil	Material is weathered to such	an extent that it has soil
			properties. Mass structure and of original rock are no longer v been significantly transported	material texture and fabric isible, but the soil has not
	XW	Extremely Weathered	Material is weathered to such properties. Mass structure and of original rock are still visible	an extent that it has soil material texture and fabric
	HW	Highly Weathered	The whole of the rock material iron staining or bleaching to the the original rock is not recogr significantly changed by wea minerals have weathered to cla be increased by leaching, or r deposition of weathering product	is discoloured, usually by e extent that the colour of nizable. Rock strength is tthering. Some primary ay minerals. Porosity may nay be decreased due to ts in pores.
	MW	Moderately Weathered	The whole of the rock material iron staining or bleaching to the the original rock is not recogniz change of strength from fresh ro	is discoloured, usually by e extent that the colour of able, but shows little or no ick
	SW	Slightly Weathered	Rock is partially discoloured v along joints but shows little or r fresh rock	with staining or bleaching no change in strength from
	FR	Fresh	Rock shows no sign of deminerals or colour changes	composition of individual
		Note : Where it is not Distinctly Weathered (L changed by weatherit ironstaining. Porosity deposition of weatherin	possible to distinguish between H W) may be used. DW is defined ng. The rock may be highly may be increased by leaching, g products in pores'	HW and MW rock the term d as 'Rock strength usually discoloured, usually by or may be decreased by
Strength (AS1726:2017)	M	Term	Point Load Strength Index (I _{s50} ,	MPa)
	L	Low	>0.1 ≤0.3	
	M	Medium	>0.3 ≤1	
	H VH	High Very High	>1 ≤3 >3 ≤10	
	EH	Extremely High	>10	-
Defect Spacing		Description Extremely closely space	he	spacing (mm) <20
		Very closely spaced		20 to 60
		Closely spaced		60 to 200 200 to 600
		Widely spaced		600 to 2000
		Very widely spaced	d	2000 to 6000
Defect Description (AS1726:2017)			d	20000
Туре	Dt	De atia a		
	Jo	Joint		
	Sh	Sheared Surface		
	Sz Ss	Sheared Zone Sheared Seam		
	Cs	Crushed Seam		
	ls Fws	Infilled Seam Extremely Weathered S	leam	
	Ews	Exitencity weathered e	oum	
Macro-surface geometry	St	Stepped		
	Un	Undulating		
	lr D	Irregular		
		ridildi		
Micro-surface geometry	Vro	Very Rough		
	Sm	Smooth		
	Po	Polished		
	SI	Slickensided		
Coating or infilling	cn	clean		
	sn	stained		
	cg	coating		

Grain Size mm			Bedded rocks (mostly sedimentary)									
More than 20	20	Gr. De	ain Size scription			At leas	st 50% of	grains are of car	bonate	At least 50% of grains are of fine-grained volcanic rock		
	6	RUDACEOUS		Rounded boulders, cobbles and gravel cemented in a finer matrix Breccia Irregular rock fragments in a finer matrix			bed)	Calcirudite		Fragments of volcanic ejecta in a finer matrix Rounded grains AGGLOMERATE Angular grains VOLCANIC BRECCIA	SALINE ROCKS Halite Anhydrite	
	0.6	ARENACEOUS	Coarse Medium Fine	SANDSTONE Angular or rounded grai cemented by clay, calci Quartzite Quartz grains and silice Arkose Many feldspar grains Greywacke Many rock chins	ins, commonly ite or iron minerals eous cement	only minerals U Calcarenite		Cemented volcanic ash	Gypsum			
	0.002 Less than 0.002	ARGIL	LACEOUS	MUDSTONE SHALE Fissile	SILTSTONE Mostly silt CLAYSTONE Mostly clay	Calcareous Mudstone		Calcisiltite Calcilutite	CHALK	Fine-grained TUFF		
Amorpho crypto-cry	us or vstalline			Flint: occurs as hands o Chert: occurs as nodule	of nodules in the cha es and beds in limes	lk tone and o	calcareou	s sandstone			COAL LIGNITE	
				Granular cemented – except amorphous rocks								
				SILICEOUS	SILICEOUS CALCAREOUS						CARBONACEOUS	
SEDIMENTARY ROCKS Granular cemented rocks vary greatly in strength, some sandstones are stronger than many Igneous rocks. Bedding specimens and is best seen in outcrop. Only sedimentary rocks, and some metamorphic rocks derived from them, of Calcareous rocks contain calcite (calcium carbonate) which effervesces with dilute hydrochloric acid							may not show in hand ntain fossils					

AS1726 – Identification of Sedimentary Rocks for Engineering Purposes

AS1726 – Identification of Metamorphic and Igneous Rocks for Engineering Purposes

Obviously for	liated rocks (mostly metamorphic)		Rocks with	massive structure	and crystalline texture	(mostly igneous)		Grain size (mm)
Grain size description			Grain size description	Pe	egmatite		Pyrosenite	More than 20
	CNEISS	MARBLE			1	_	Poridorito	20
	Well developed but often widely	QUARTZITE		GRANITE	Diorite	GABBRO	Fendonie	
	schistose bands							6
COARSE		Granulite	COARSE	These rocks are phorphyritic and for example, as	e sometimes I are then described, porphyritic granite			
	Migmatite	HORNEELS						
	and gneisses				-			2
	SCHIST Well developed undulose foliation; generally much mica	Amphibolite		Micorgranite	Microdiorite			0.6
MEDINA				These rocks are	e sometimes			
MEDIUM		Serpentine	MEDIUM	as porphyries	are then described	Dolerite		0.2
								0.06
	PHYLLITE Slightly undulose foliation; sometimes 'spotted'		FINE	RHYOLITE	ANDESITE	DACALT		0.002
FINE	SLATE Well developed plane cleavage (foliation)		FINE	These rocks are phorphyritic and as porphyries	sometimes are then described	BASALI		Less than 0.002
	Mylonite Found in fault zones, mainly in igneous and metamorphic areas			Obsidian	Volcanic glass			Amorphous or cryptocrystallin e
CRYSTALLIN	E			Pale<			>Dark	
SILICEOUS		Mainly SILICEOUS		ACID Much quartz	INTERMEDIATE Some quartz	BASIC Little or no quartz	ULTRA BASIC	
METAMORPH Most metamori impart fissility. foliated metam Any rock bake and is general Most fresh me	IIC ROCKS phic rocks are distinguished by foliatic Foliation in gneisses is best observe norphics are difficult to recognize exce d by contact metamorphism is descrit ly somewhat stronger than the parent tamorphic rocks are strong although p	on which may d in outcrop. Non- pt by association. bed as 'hornfels' rock berhaps fissile	IGNEOUS RC Composed of Mode of occu	OCKS closely interlocking irrence : 1 Batholith	g mineral grains. Stron ; 2 Laccoliths; 3 Sills; 4	g when fresh; not p Dykes; 5 Lava Flo	orous ws; 6 Veins	

INDESCO SUITE 401, LEVEL 4, 24 HUNTER STREET PARRAMATTA NSW 2150

GEOTECHNICAL- SALINITY & PAVEMENT DESIGN INVESTIGATION PROPOSED RESIDENTIAL SUBDIVISION, 192 NARELLAN ROAD, CAMPBELLTOWN

	CA	LIFORNIA BEARIN	G RATIO	<u>rest rei</u>	PORT	Page 1 of 2
CBR Test Proce	dure	Laboratory Compaction	on Method	Sa	mpling Method	Date of Test
AS1289 6.1.1		AS1289 5.1.	1	AS1289	0 1.2.1 Clause 6.5.4	19/02/2021
Job No:	14844/1	Tested By: DP		Check	ed By: MM	Lab Prestons
Laboratory Num	ber	14844/1-1	14844	/1-2	14844/1-3	14844/1-4
Test Pit No		2	6		28	37
Depth (m)		0.5-0.8	1.0-	1.3	0.7-1.0	0.4-0.7
Date Sampled		9-Feb-21	9-Feb)-21	9-Feb-21	9-Feb-21
Sample Descrip	tion	(CH) Silty Clay, high plasticity, brown/orange	(CI) Silty Clay, medium plasticity, grey mottled red, traces of ironstone.		(CI-CH) Silty Clay, medium plasticity, grey mottled red, traces of ironstone fragments.	(CI) Silty Clay, medium plasticity, brown.
Maximum Dry D	ensity t/m3	1.71	1.77		1.74	1.79
Optimum Moistu	re Content %	21.5	17.5		19.5	19.0
Field Moisture C	content %	18.9	15.	2	16.1	14.7
% Retained 19m		0.0	0.0)	0.0	0.0
EXCluded (Yes / N	lo / Not Applicable)	Not Applicable	Not App	licable	Not Applicable	Not Applicable
Dry Density	Before soaking	1.69	1.76		1.73	1.78
t/m ³	After soaking	1.68	1.74		1.71	1.75
Density Ratio %	Before soaking	99.0	99.	.5	99.5	99.5
Moisture	Before soaking	21.5	17.6		19.5	19.1
Content %	After soaking	22.5	20.	.9	21.6	21.3
Moisture Ratio %	Before soaking	100.0	100	.5	100.0	100.5
Number of Days	Soaked	4	4		4	4
Surcharge	kg	9.0	9.0)	9.0	9.0
Moisture Content after	Top 30mm	21.7	21.	7	22.8	21.3
test %	Whole Sample	22.4	20.	.8	21.5	21.2
Swell after soaki	ing %	2.0	1.	5	1.5	1.5
Penetration	mm	2.5	2.	ō	2.5	2.5
CBR VALUE	%	4	3.	5	4.5	4

Form No R003 Version 04 06/13 - issued by ER

Accredited for compliance with ISO/IEC 17025 - Testing.

M Morley

26/02/2021 Approved Signatory

m. Mgh

Nata Accreditation Number 2734 Corporate Site Number 14227

Unit 4, 18-20 Whyalla Place, Prestons NSW 2170 Telephone: (02) 9607 6111 email: info@geotech.com.au www.geotech.com.au

INDESCO SUITE 401, LEVEL 4, 24 HUNTER STREET PARRAMATTA NSW 2150

> SITE INVESTIGATION STAGES 1 AND 2 (Limited Sampling) PROPOSED RESIDENTIAL SUBDIVISION, 192 NARELLAN ROAD, CAMPBELLTOWN

	CA	LIFORNIA BEARIN	G RATIO	IESI RE	PORI			Page 2 of 2
CBR Test Proce	edure	Laboratory Compaction	on Method	Sa	mpling Me	ethod	Date of Test	
AS1289 6.1.1		AS1289 5.1.	1	AS1289	9 1.2.1 Cla	ause 6.5.4		19/02/2021
Job No:	14844/2	Tested By: DP		Check	ed By:	MM	Lab	Prestons
Laboratory Num	ber	14844/2-5						
Test Pit No		42						
Depth (m)		1.0-1.3						
Date Sampled		9-Feb-21						
Sample Descrip	tion							
		SHALE, grey,	SHALE, grey,					
		distinctly weathered,						
		mealum strength.						
Maximum Drv D	ensity t/m3	1.89						
Optimum Moistu	re Content %	14.0						
Field Moisture C	Content %	10.8						
% Retained 19n	าท	19						
Excluded (Yes / N	No / Not Applicable)	Yes						
		CBR	TEST RESU	JLTS				
	Before	1 07						
Dry Density	soaking	1.07						
t/m ³	After	1.86						
	soaking							
Density Ratio	Before	99.0						
70	Before							
Moisture	soaking	13.9						
Content %	After	40.4						
	soaking	16.1						
Moisture Ratio	Before	99.5						
%	soaking							
Number of Days	Soaked	4					_	
Surcharge	kg	9.0						
Moisture	Top 30mm	16.1						
test %	Whole Sample	16.0						
Swell after soak	ing %	0.5						
Penetration	mm	2.5						
CBR VALUE	%	9						

Form No R003 Version 04 06/13 - issued by ER

NATA

Accredited for compliance with ISO/IEC 17025 - Testing.

M Morley 26/02/2021

Approved Signatory

Nata Accreditation Number 2734 Corporate Site Number 14227

Unit 4, 18-20 Whyalla Place, Prestons NSW 2170 Telephone: (02) 9607 6111 email: info@geotech.com.au www.geotech.com.au

mangh

ANALYTICAL REPORT

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong LIANG Metals/Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

16/02/2021

SE216359 R0

pH in soil (1:5) [AN101] Tested: 16/2/2021

			TP4	TP4	TP16	TP16	TP18
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.4	1.4-1.6	0.2-0.4	1.3-1.5	0.2-0.4
			9/2/2021	9/2/2021	9/2/2021	9/2/2021	9/2/2021
PARAMETER	UOM	LOR	SE216359.001	SE216359.002	SE216359.003	SE216359.004	SE216359.005
рН	pH Units	0.1	5.9	5.6	7.0	5.0	5.4

			TP18	TP24	TP24	TP34	TP34
			SOIL 0.7-0.9 9/2/2021	SOIL 0.2-0.6 9/2/2021	SOIL 1.0-1.2 9/2/2021	SOIL 0.2-0.4 9/2/2021	SOIL 1.2-1.4 9/2/2021
PARAMETER	UOM	LOR	SE216359.006	SE216359.007	SE216359.008	SE216359.009	SE216359.010
рН	pH Units	0.1	5.2	5.5	4.8	5.5	4.5

			TP44	TP44	TP50	TP50
			SOIL	SOIL	SOIL	SOIL
			0.2-0.4	1.8-2.0	0.2-0.4	0.8-1.0
			9/2/2021	9/2/2021	9/2/2021	9/2/2021
PARAMETER	UOM	LOR	SE216359.011	SE216359.012	SE216359.013	SE216359.014
рН	pH Units	0.1	6.1	5.2	6.2	5.1

Conductivity and TDS by Calculation - Soil [AN106] Tested: 16/2/2021

			TP4	TP4	TP16	TP16	TP18
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.4	1.4-1.6	0.2-0.4	1.3-1.5	0.2-0.4
			9/2/2021	9/2/2021	9/2/2021	9/2/2021	9/2/2021
PARAMETER	UOM	LOR	SE216359.001	SE216359.002	SE216359.003	SE216359.004	SE216359.005
Conductivity of Extract (1:5 as received)	µS/cm	1	90	510	25	230	83
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	100	570	30	270	100
			TP18	TP24	TP24	TP34	TP34
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.7-0.9	0.2-0.6	1.0-1.2	0.2-0.4	1.2-1.4
			9/2/2021	9/2/2021	9/2/2021	9/2/2021	9/2/2021
PARAMETER	UOM	LOR	SE216359.006	SE216359.007	SE216359.008	SE216359.009	SE216359.010
Conductivity of Extract (1:5 as received)	µS/cm	1	130	120	660	43	390
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	140	140	780	49	430

			TP44	TP44	TP50	TP50
			SOIL	SOIL	SOIL	SOIL
			0.2-0.4	1.8-2.0	0.2-0.4	0.8-1.0
			9/2/2021	9/2/2021	9/2/2021	9/2/2021
PARAMETER	UOM	LOR	SE216359.011	SE216359.012	SE216359.013	SE216359.014
Conductivity of Extract (1:5 as received)	µS/cm	1	26	120	20	380
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	30	140	23	400

ANALYTICAL RESULTS

SE216359 R0

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 16/2/2021

			TP4	TP4	TP16	TP16	TP18
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.4	1.4-1.6	0.2-0.4	1.3-1.5	0.2-0.4
			9/2/2021	9/2/2021	9/2/2021	9/2/2021	9/2/2021
PARAMETER	UOM	LOR	SE216359.001	SE216359.002	SE216359.003	SE216359.004	SE216359.005
Exchangeable Sodium, Na	mg/kg	2	310	990	300	1100	240
Exchangeable Sodium, Na	meq/100g	0.01	1.3	4.3	1.3	4.7	1.0
Exchangeable Sodium Percentage*	%	0.1	8.4	29.0	7.6	32.9	7.1

			TP18	TP24	TP24	TP34	TP34
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.7-0.9	0.2-0.6	1.0-1.2	0.2-0.4	1.2-1.4
			9/2/2021	9/2/2021	9/2/2021	9/2/2021	9/2/2021
PARAMETER	UOM	LOR	SE216359.006	SE216359.007	SE216359.008	SE216359.009	SE216359.010
Exchangeable Sodium, Na	mg/kg	2	440	410	1600	190	860
Exchangeable Sodium, Na	meq/100g	0.01	1.9	1.8	6.9	0.82	3.7
Exchangeable Sodium Percentage*	%	0.1	18.8	11.3	26.9	8.0	29.8

			TP44	TP44	TP50	TP50
					0.01	
			SOIL	SOIL	SOIL	SOIL
			0.2-0.4	1.8-2.0	0.2-0.4	0.8-1.0
			9/2/2021	9/2/2021	9/2/2021	9/2/2021
PARAMETER	UOM	LOR	SE216359.011	SE216359.012	SE216359.013	SE216359.014
Exchangeable Sodium, Na	mg/kg	2	300	780	170	600
Exchangeable Sodium, Na	meq/100g	0.01	1.3	3.4	0.76	2.6
Exchangeable Sodium Percentage*	%	0.1	8.6	25.2	5.6	25.4

SE216359 R0

Moisture Content [AN002] Tested: 10/2/2021

			TP4	TP4	TP16	TP16	TP18
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.4	1.4-1.6	0.2-0.4	1.3-1.5	0.2-0.4
			9/2/2021	9/2/2021	9/2/2021	9/2/2021	9/2/2021
PARAMETER	UOM	LOR	SE216359.001	SE216359.002	SE216359.003	SE216359.004	SE216359.005
% Moisture	%w/w	1	13.0	10.8	15.0	17.3	16.8

			TP18	TP24	TP24	TP34	TP34
			SOIL 0.7-0.9 9/2/2021	SOIL 0.2-0.6 9/2/2021	SOIL 1.0-1.2 9/2/2021	SOIL 0.2-0.4 9/2/2021	SOIL 1.2-1.4 9/2/2021
PARAMETER	UOM	LOR	SE216359.006	SE216359.007	SE216359.008	SE216359.009	SE216359.010
% Moisture	%w/w	1	9.1	14.4	15.3	11.9	10.6

			TP44	TP44	TP50	TP50
			SOIL	SOIL	SOIL	SOIL
			0.2-0.4	1.8-2.0	0.2-0.4	0.8-1.0
			9/2/2021	9/2/2021	9/2/2021	9/2/2021
PARAMETER	UOM	LOR	SE216359.011	SE216359.012	SE216359.013	SE216359.014
% Moisture	%w/w	1	15.4	15.4	12.5	6.6

METHOD	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract of as received sample with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.
AN122	Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.
AN122	The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100. ESP can be used to categorise the sodicity of the soil as below :
	ESP < 6%non-sodicESP 6-15%sodicESP >15%strongly sodic
	Method is referenced to Rayment and Lyons, 2011, sections 15D3 and 15N1

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

*** Indicates that both * and ** apply.

Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	LABORATORY DETAILS					
Contact	Ram Ravi-Indran	Manager	Huong Crawford					
Client	Geotechnique	Laboratory	SGS Alexandria Environmental					
Address	P.O. Box 880 NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015					
Telephone	02 4722 2700	Telephone	+61 2 8594 0400					
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499					
Email	ram@geotech.com.au	Email	au.environmental.sydney@sgs.com					
Project	14844-1 Campbelltown	SGS Reference	SE216359 R0					
Order Number	(Not specified)	Date Received	09 Feb 2021					
Samples	14	Date Reported	16 Feb 2021					

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Analysis Date

Moisture Content

14 items

Samples clearly labelled	Yes	Complete documentation received	Yes	
Sample container provider	Client	Sample cooling method	None	
Samples received in correct containers	Yes	Sample counts by matrix	14 Soil	
Date documentation received	10/2/2021	Type of documentation received	COC	
Samples received in good order	Yes	Samples received without headspace	N/A	
Sample temperature upon receipt	20.7°C	Sufficient sample for analysis	Yes	
Turnaround time requested	Standard			
-				

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia

www.sgs.com.au f +61 2 8594 0499

Method: ME-(AU)-[ENV]AN106

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Conductivity and TDS by Calculation - Soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP4	SE216359.001	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021
TP4	SE216359.002	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021
TP16	SE216359.003	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021
TP16	SE216359.004	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021
TP18	SE216359.005	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021
TP18	SE216359.006	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021
TP24	SE216359.007	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021
TP24	SE216359.008	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021
TP34	SE216359.009	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021
TP34	SE216359.010	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021
TP44	SE216359.011	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021
TP44	SE216359.012	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021
TP50	SE216359.013	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021
TP50	SE216359.014	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021	16 Feb 2021
Exchangeable Cations and	Cation Exchange Capacit	y (CEC/ESP/SAR)					Method: M	ME-(AU)-[ENV]AN122
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP4	SE216359.001	LB218674	09 Feb 2021	09 Feb 2021	09 Mar 2021	16 Feb 2021	09 Mar 2021	16 Feb 2021
TP4	SE216359.002	LB218674	09 Feb 2021	09 Feb 2021	09 Mar 2021	16 Feb 2021	09 Mar 2021	16 Feb 2021
TP16	SE216359.003	LB218674	09 Feb 2021	09 Feb 2021	09 Mar 2021	16 Feb 2021	09 Mar 2021	16 Feb 2021
TP16	SE216359.004	LB218674	09 Feb 2021	09 Feb 2021	09 Mar 2021	16 Feb 2021	09 Mar 2021	16 Feb 2021
TP18	SE216359.005	LB218674	09 Feb 2021	09 Feb 2021	09 Mar 2021	16 Feb 2021	09 Mar 2021	16 Feb 2021
TP18	SE216359.006	LB218674	09 Feb 2021	09 Feb 2021	09 Mar 2021	16 Feb 2021	09 Mar 2021	16 Feb 2021
TP24	SE216359.007	LB218674	09 Feb 2021	09 Feb 2021	09 Mar 2021	16 Feb 2021	09 Mar 2021	16 Feb 2021
TP24	SE216359.008	LB218674	09 Feb 2021	09 Feb 2021	09 Mar 2021	16 Feb 2021	09 Mar 2021	16 Feb 2021
TP34	SE216359.009	LB218674	09 Feb 2021	09 Feb 2021	09 Mar 2021	16 Feb 2021	09 Mar 2021	16 Feb 2021
TP34	SE216359.010	LB218674	09 Feb 2021	09 Feb 2021	09 Mar 2021	16 Feb 2021	09 Mar 2021	16 Feb 2021
TP44	SE216359.011	LB218674	09 Feb 2021	09 Feb 2021	09 Mar 2021	16 Feb 2021	09 Mar 2021	16 Feb 2021
TP44	SE216359.012	LB218674	09 Feb 2021	09 Feb 2021	09 Mar 2021	16 Feb 2021	09 Mar 2021	16 Feb 2021
TP50	SE216359.013	LB218674	09 Feb 2021	09 Feb 2021	09 Mar 2021	16 Feb 2021	09 Mar 2021	16 Feb 2021
TP50	SE216359.014	LB218674	09 Feb 2021	09 Feb 2021	09 Mar 2021	16 Feb 2021	09 Mar 2021	16 Feb 2021
Moisture Content							Method: M	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP4	SE216359.001	LB218384	09 Feb 2021	09 Feb 2021	23 Feb 2021	10 Feb 2021	15 Feb 2021	16 Feb 2021†

TP4 SE216359.002 LB218384 09 Feb 2021 09 Feb 2021 23 Feb 2021 10 Feb 2021 15 Feb 2021 16 Feb 2021† TP16 SE216359.003 LB218384 09 Feb 2021 09 Feb 2021 23 Feb 2021 15 Feb 2021 16 Feb 2021† 10 Feb 2021 TP16 SE216359.004 LB218384 09 Feb 2021 09 Feb 2021 23 Feb 2021 10 Feb 2021 15 Feb 2021 16 Feb 2021+ SE216359.005 TP18 LB218384 09 Feb 2021 09 Feb 2021 23 Feb 2021 10 Feb 2021 15 Feb 2021 16 Feb 2021† TP18 SE216359.006 LB218384 09 Feb 2021 15 Feb 2021 09 Feb 2021 23 Feb 2021 10 Feb 2021 16 Feb 2021† TP24 SE216359.007 LB218384 09 Feb 2021 09 Feb 2021 23 Feb 2021 10 Feb 2021 15 Feb 2021 16 Feb 2021† LB218384 09 Feb 2021 15 Feb 2021 16 Feb 2021† TP24 SE216359.008 09 Feb 2021 23 Feb 2021 10 Feb 2021 TP34 SE216359.009 LB218384 09 Feb 2021 09 Feb 2021 23 Feb 2021 10 Feb 2021 15 Feb 2021 16 Feb 2021† TP34 SE216359.010 LB218384 09 Feb 2021 09 Feb 2021 23 Feb 2021 10 Feb 2021 15 Feb 2021 16 Feb 2021† TP44 SE216359.011 LB218384 09 Feb 2021 15 Feb 2021 16 Feb 2021† 09 Feb 2021 23 Feb 2021 10 Feb 2021 TP44 SE216359.012 LB218384 09 Feb 2021 09 Feb 2021 23 Feb 2021 10 Feb 2021 15 Feb 2021 16 Feb 2021† TP50 SE216359.013 LB218384 09 Feb 2021 09 Feb 2021 23 Feb 2021 10 Feb 2021 15 Feb 2021 16 Feb 2021† TP50 SE216359.014 LB218384 09 Feb 2021 09 Feb 2021 23 Feb 2021 10 Feb 2021 15 Feb 2021 16 Feb 2021+

pH in soil (1:5)

pH in soil (1:5)	in soil (1:5) Method: ME-(AU)-[ENV]AN101							
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP4	SE216359.001	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	17 Feb 2021	16 Feb 2021
TP4	SE216359.002	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	17 Feb 2021	16 Feb 2021
TP16	SE216359.003	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	17 Feb 2021	16 Feb 2021
TP16	SE216359.004	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	17 Feb 2021	16 Feb 2021
TP18	SE216359.005	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	17 Feb 2021	16 Feb 2021
TP18	SE216359.006	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	17 Feb 2021	16 Feb 2021
TP24	SE216359.007	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	17 Feb 2021	16 Feb 2021
TP24	SE216359.008	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	17 Feb 2021	16 Feb 2021
TP34	SE216359.009	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	17 Feb 2021	16 Feb 2021
TP34	SE216359.010	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	17 Feb 2021	16 Feb 2021

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

pH in soil (1:5) (continued)							Method: M	IE-(AU)-[ENV]AN101
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP44	SE216359.011	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	17 Feb 2021	16 Feb 2021
TP44	SE216359.012	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	17 Feb 2021	16 Feb 2021
TP50	SE216359.013	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	17 Feb 2021	16 Feb 2021
TP50	SE216359.014	LB218665	09 Feb 2021	09 Feb 2021	16 Feb 2021	16 Feb 2021	17 Feb 2021	16 Feb 2021

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

SE216359 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN106

Conductivity and TDS by Calculation - Soll				
Sample Number	Parameter	Units	LOR	Result
LB218665.001	Conductivity of Extract (1:5 as received)	µS/cm	1	<1
	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	0
LD2 10003.001	Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)			Me	lethod: ME-(AU)-[ENV]AN122	
Sample Number	Parameter	Units	LOR	Result	
LB218674.001	Exchangeable Sodium, Na	mg/kg	2	0	

Method: ME_(ALI)_JENV/AN106

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Conductivity and TDS by Calculation - Soil

conducting and t								[
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE216359.010	LB218665.014	Conductivity of Extract (1:5 as received)	µS/cm	1	390	350	31	9
		Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	430	92.710762331	30	9
SE216359.014	LB218665.019	Conductivity of Extract (1:5 as received)	µS/cm	1	380	370	31	2
		Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	400	95.274647887	31	2
Moisture Content						Meth	od: ME-(AU)-	ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE216359.008	LB218384.011	% Moisture	%w/w	1	15.3	15.6	36	2
SE216359.014	LB218384.018	% Moisture	%w/w	1	6.6	6.7	45	1

pH in soil (1:5)

pH in soil (1:5) Method: ME					od: ME-(AU)-[ENVJAN101		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE216359.010	LB218665.014	рН	pH Units	0.1	4.5	4.5	32	1
SE216359.014	LB218665.019	рН	pH Units	0.1	5.1	5.1	32	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity and TDS by Calculation - Soil Method: ME-(AU)-[ENV]							
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB218665.002	Conductivity of Extract (1:5 as received)	µS/cm	1	310	303	85 - 115	101
	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	NA	303	85 - 115	101

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) Method: ME-(A				U)-[ENV]AN122			
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB218674.002	Exchangeable Sodium, Na	meq/100g	0.01	0.19	0.194	80 - 120	100

pH in soil (1:5)

pH in soil (1:5)	Method: ME				lethod: ME-(A	U)-[ENV]AN101	
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB218665.003	pH	pH Units	0.1	7.4	7.415	98 - 102	100

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

Laboratory Test Request / Chain of Custody Record

Lemko Place PENRITH NS	W 2750		-	PEN	P O Box 880 RITH NSW 2751	Tel: (02) Fax: (02) email: in	4722 2700 4722 6161 fo@geotech.c	om.au	- [- #	. *8	1 August	Page	1 of 1	
TO: SGS ENVIRONMENTAL SERVIC UNIT 16 33 MADDOX STREET ALEXANDRIA NSW 2015		ERVICES			a de la companya de l	Sampling By:		JH	Job No Project:	14844-1 proposed residential subdivision			1	
PH:	02 8594 0400			FAX:	02 8594 0499		Project Man	ager:	RR	Location:	Campbe	lltown		
ATTN:	Ms Emily Yin	1.4.11.	the Martin			-0-				D				
	Sampling	details	Terre-						Sec. 1	Results	require	ed by:		
Location	Depth	Soil	Water	EC (1:5)	рН	Sulphate	Chloride	ESP	1 2 1 1	-	1.72	Notes	Keep Sam	ple
TP4	0.2-0.4	DSP	2	1	✓	1	4	\checkmark	The state		1000	ESP=Exchnageable Sodium Perc	entage 🗸	
	1.4-1.6	DSP		1	✓	1		\checkmark		and the second	A Street		1	
TP16	0.2-0.4	DSP		-	× 1		1. See	\checkmark		1			1	
	1.3-1.5	DSP		-	~			~					1	
TP18	0.2-0.4	DSP	· · · · · · · · · · · · · · · · · · ·	~	×			\checkmark	1				1	
	0.7-0.9	DSP	-	-	1			\checkmark		A CONTRACTOR			√	
TP24	0.2-0.6	DSP		1	1	1		\checkmark		1.1.	SGS	EHS Sydney COC	✓	
	1.0-1.2	DSP	and in	~	1	60		\checkmark			SE	216359	~	
TP34	0.2-0.4	DSP	and the second s	1	1			\checkmark				10333	~	
1	1.2-1.4	DSP		-	1			\checkmark					~	
TP44	0.2-0.4	DSP		~	~	11:		1					✓ ✓	
191	1.8-2.0	DSP		~	1			\checkmark	15.00 .00				~	
TP50	0.2-0.4	DSP		✓		Carlo and		\checkmark	and the second	8			✓	
infle .	0.8-1.0	DSP		~				\checkmark						
Rote				Plea	ase Use Geo	otechnica	al Engine	ering	Temple	te for Re	porting	1		
1		F	Relinquished	l by	12	and the second second					Rec	ceived by		
1	lame	- e-	1000	Signature	-	Date	e.	Name		R	RI	Signature		
Logondi	Jack		100	JSH		9/02/2021	50	USA		A K	punc	M 04102121	63.22	
WG WP				USG DSG	Undisturbed soil s Disturbed soil sar	sample (glass nple (glass jar	j DSP	Disturbed Test requi	soil sample red	e (small plastic	bag)	* Purge & Trap # Geotechnique Screen		

SAMPLE RECEIPT ADVICE

- CLIENT DETAIL	S	LABORATORY DETA	LABORATORY DETAILS				
Contact	Ram Ravi-Indran	Manager	Huong Crawford				
Client	Geotechnique	Laboratory	SGS Alexandria Environmental				
Address	P.O. Box 880 NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015				
Telephone	02 4722 2700	Telephone	+61 2 8594 0400				
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499				
Email	ram@geotech.com.au	Email	au.environmental.sydney@sgs.com				
Project	14844-1 Campbelltown	Samples Received	Tue 9/2/2021				
Order Number	(Not specified)	Report Due	Tue 16/2/2021				
Samples	14	SGS Reference	SE216359				

- SUBMISSION DETAILS

This is to confirm that 14 samples were received on Tuesday 9/2/2021. Results are expected to be ready by COB Tuesday 16/2/2021. Please quote SGS reference SE216359 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes Client Yes 10/2/2021 Yes 20.7°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes None 14 Soil COC N/A Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

5 Australia 5 Australia

ıstralia t +61 2 8594 0400 ıstralia f +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client Geotechnique

- SUMMARY OF ANALYSIS

Project 14844-1 Campbelltown

No.	Sample ID	Conductivity and TDS by Calculation - Soil	Exchangeable Cations and Cation Exchange Capacity	Moisture Content	pH in soil (1:5)
001	TP4 0.2-0.4	2	3	1	1
002	TP4 1.4-1.4	2	3	1	1
003	TP16 0.2-0.4	2	3	1	1
004	TP16 1.3-1.5	2	3	1	1
005	TP18 0.2-0.4	2	3	1	1
006	TP18 0.7-0.9	2	3	1	1
007	TP24 0.2-0.6	2	3	1	1
008	TP24 1.0-1.2	2	3	1	1
009	TP34 0.2-0.4	2	3	1	1
010	TP34 1.2-1.4	2	3	1	1
011	TP44 0.2-0.4	2	3	1	1
012	TP44 1.8-2.0	2	3	1	1
013	TP50 0.2-0.4	2	3	1	1
014	TP50 0.8-1.0	2	3	1	1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .